Marine Structure Derived Calcium Phosphate–Polymer Biocomposites for Local Antibiotic Delivery

نویسندگان

  • Innocent J. Macha
  • Sophie Cazalbou
  • Besim Ben-Nissan
  • Kate L. Harvey
  • Bruce Milthorpe
چکیده

Hydrothermally converted coralline hydroxyapatite (HAp) particles loaded with medically active substances were used to develop polylactic acid (PLA) thin film composites for slow drug delivery systems. The effects of HAp particles within PLA matrix on the gentamicin (GM) release and release kinetics were studied. The gentamicin release kinetics seemed to follow Power law Korsmeyer Peppas model with mainly diffusional process with a number of different drug transport mechanisms. Statistical analysis shows very significant difference on the release of gentamicin between GM containing PLA (PLAGM) and GM containing HAp microspheres within PLA matrix (PLAHApGM) devices, which PLAHApGM displays lower release rates. The use of HAp particles improved drug stabilization and higher drug encapsulation efficiency of the carrier. HAp is also the source of Ca2+ for the regeneration and repair of diseased bone tissue. The release profiles, exhibited a steady state release rate with significant antimicrobial activity against Staphylococcus aureus (S. aureus) (SH1000) even at high concentration of bacteria. The devices also indicated significant ability to control the growth of bacterial even after four weeks of drug release. Clinical release profiles can be easily tuned from drug-HAp physicochemical interactions and degradation kinetics of polymer matrix. The developed systems could be applied to prevent microbial adhesion to medical implant surfaces and to treat infections mainly caused by S. aureus in surgery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ceramic Biocomposites as Biodegradable Antibiotic Carriers in the Treatment of Bone Infections

Local release of antibiotic has advantages in the treatment of chronic osteomyelitis and infected fractures. The adequacy of surgical debridement is still key to successful clearance of infection but local antibiotic carriers seem to afford greater success rates by targeting the residual organisms present after debridement and delivering much higher local antibiotic concentrations compared with...

متن کامل

Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity-drug interaction.

In this work, novel injectable calcium phosphate foams (CPFs) were combined with an antibiotic (doxycycline) to design an innovative dosage form for bone regeneration. The material structure, its drug release profile and antibiotic activity were investigated, while its clinical applicability was assessed through cohesion and injectability tests. Doxycycline had a clear effect on both the micro ...

متن کامل

Investigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer

This study deals with the effect of gelatin on physical and mechanical properties of  calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...

متن کامل

Gentamycin-impregnated calcium phosphate cement for calcaneal osteomyelitis: a case report.

We report a case of chronic calcaneal osteomyelitis in a diabetic patient who was successfully treated with radical debridement and gentamycin-impregnated calcium phosphate cement. At 1.5-year follow-up, the patient could walk without any assistance. Calcium phosphate cement is an effective local antibiotic delivery system and a biocompatible material for filling the debrided space to facilitat...

متن کامل

Assay method for polymer-controlled antibiotic release from allograft bone to target orthopaedic infections - biomed 2010.

To mitigate and circumvent orthopaedic-associated infection, systematic oral and parenteral antibiotic therapy is often used; however, efficacy is limited due to dosing, systemic side-effects, patient compliance, effective delivery, treatment length, and resistant bacteria. A more effective method may be sustained local drug delivery of antibiotics at the wound site, using delivery vehicles tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015